
An Approach for Automate Requirements Elicitation Using Use Case
Models

Wai Wai Han, Khine Khine Oo
University of Computer Studies, Yangon

waiwaiwave@gmail.com, k2khine@gmail.com

ABSTRACT

 Requirements elicitation is vital importance in
system development process. While doing software
system development, the stakeholders can’t states
real and nearly complete requirements because they
might not know what they need or they have
incomplete knowledge about the functionality of the
intended system. To get requirements precisely from
users, the software engineer must ask selective
question using domain knowledge and requirements
elicitation technique. In this paper, we present an
approach to automate requirements elicitation
system, which accepts stakeholders’ requirements as
questionnaires and checklists form that guide the
user what their real requirements correctively. Our
system automatically generates software
requirements specification (SRS) and use case
models. Due to the SRS, system analyst get more
clear requirements as well as use case models give
clear understanding of the proposed system.

Keywords
Requirements Elicitation, Requirements Specification

1. Introduction

 Software requirements engineering (RE) is one of
the early processes of software development life
cycle that involves the process of discovering the
system purpose, by identifying stakeholders, and their
needs, and documenting these in a form that is
amenable to analysis, communication and subsequent
implementation [12] . Among the processes of
requirement engineering, Software Requirements
Elicitation may be the most important area of
requirement engineering and possibly of the entire
software processes because requirements are the
misunderstood part of the system development and
indefinite or ambiguous system requirements can
cause serious problem for system developers [4][8].
It is generally accepted that errors produced at the
requirements stage, if undetected until a later stage of
software development and the requirements
refinement can be very costly [10].

During requirements elicitation, all stakeholders
(users, customers, developers, etc) are likely to be
unfamiliar or incomplete knowledge about the
functionality of the intended application [5]. This
creates a barrier to motivate customers to state
precisely what they need. The reason behind this
difficulty is that the software engineer must ask
selective question, mostly gained through experience,
to be better elicit the true needs of the business and
objectives of the stakeholders or to overcome this
barrier [4].

In this paper, we present an approach to automate
requirements elicitation using use case models.The
purpose is to put an automate requirements elicitation
system is implemented with the elicitation techniques
using questionnaries and checklists, to support
system analyst to further elaborate the system
requirements that do not depend on a stakeholder’s
presence. This elicitation technique is simple and
provides an efficient way to collect information from
multiple stakeholders quickly. Moreover, the
stakeholders’ can write their requirements description
as an input and then produce the whole system final
results as software requirements specification (SRS
view) and use case model to clear understanding of
the requirements. The concept of natural language
understanding use to transform the requirements
description as a use case model that extract actors,
use case and relationships from the description.
Therefore every stakeholder between the system
development team can communicate easily.

The remainder of this paper is organized as
follows. In Section 2, background theory of the
system describes. Section 3 explains how the
architecture of automate requirements elicitation
system will be implemented. Section 4 expresses
implementation of the system. Conclusion and future
work explain in Section 5.

2. Background Theory

The elicitation activity consists of gathering

information about user needs, primarily from the
users themselves. It is a process of helping the users
to understand and articulate their requirements so
they can make it to be known to the developers [7].

2.1 Questionnaries Elicitation Techniques

Questionnaries are one of the methods of
gathering requirements in less cost [13].
Questionnaries reach a large number of people, not
only in less time but also in a lesser cost. But the
results extracted from the questionnaries should be
clearly analyzed. The result from the questionnaries
mainly depends on the two factors, firstly
effectiveness and the design of the questionnaire
dishonesty of the respondent. Secondly, a well-
designed and effective questionnaries can be used to
decide the actual user requirements objectives and
the constraints [2]. A good structured questionnaire
influences people to answer honestly thus making it
possible to gather reliable results forms a large group
of people. The data collected through questionnaries
can be used to analyze the obtained results, both
systematically and quantitatively [13]. The designing
of questionnaries is a multi stage process and should
be viewed accordingly.

The steps involved in designing and administering
a questionnaries are [2] [13],

� The purpose of the survey should be
defined

� The sampling group (respondents to be
survey) should be decided

� Preparing and developing the
Questionnaries

� Conducting the Questionnaries process
� Gathering and analyzing the results

Steps in arranging a questionnaries [11]
� The questions should be arranged well,

so that general questions are followed
by particular questions.

� Arrange the questions such that, easy
questions comes first.

� Arrange the questions in an order of
known to known

� Try to use closed format questions in
the beginning

� The questions relevant to the main
subject should be given high priority
and stated at the start of the
questionnaries.

� Avoid personal and intimate questions
at the beginning

2.2 Use Case Diagram

Use case diagrams are one of the five diagrams in
the UML for modeling the dynamic aspects of
systems. Use case diagrams are used to visualize,
specify, construct, and document the (intended)
behavior of the system, during requirements capture
and analysis [1]. Use Case views or diagrams
describe the system from the User’s point of view,

and the various functionalities expected from the
system to be developed and how user is going to
interact with those features. Provide a way for
developers, domain experts and end-users to
communicate [6]. Serve as basis for testing. Use case
diagrams mainly contain use cases, actors (the user),
and their relationships (see Figure 1).

 actor use case

<<actor name>>

 name

Figure 1. Actor and Use Case

2.3 Natural Language Processing

Natural Language Processing (NLP) is the
engineering of systems that process or analyze
written or spoken natural language. It is a subfield of
artificial intelligence and computational linguistics. It
studies the problems of automated generation and
understanding of natural human language [3] [9].
There are different levels of knowledge for Natural
Language Understanding. Some of knowledge is as
follows:

� Phonetic and Phonological knowledge
� Morphological knowledge
� Syntactic knowledge
� Semantic knowledge
� Pragmatic knowledge
� Discourse knowledge
� World knowledge

2.3.1 Morphology

In morpheme-based morphology, a morpheme is

the smallest linguistic unit that has semantic meaning.
In spoken language, morphemes are composed of
phonemes (the smallest linguistically distinctive units
of sound), and in written language morphemes are
composed of graphemes (the smallest unit of written
language).

2.3.1.1 Type of Morpheme

The definition of a morpheme is “a minimal unit

of meaning of grammatical function”. There are two
types or morpheme:

Free morpheme – can stand by themselves as
single words. E.g., open and tour.

Bound morpheme – cannot normally stand alone,
but which are typically attached to another form. E.g.,

<<use case name>>

re, -ish, -ed, -s. All prefix and suffix in English are
bound morpheme.

3. System Design

Figure 2. Overview of the System Design

The design of the automate requirements

elicitation system is illustrated in Figure 2. In this
system, there are two main parts. The first part is
accepted stakeholder’s requirements as
questionnaries and checklist form. That is predefined
question and answer by system analyst who uses
questionnaries elicitation techniques. The
stakeholders can fill their requirements in the form.
Then the system transforms their input requirements
into Software requirements specification (SRS) and
use case diagram by using the rules of SRS and use
case modeling to be clear understanding of their
requirements.

At second part, the system will be accepted
stakeholder’s requirements or problem description as
input sentences to produce use case model. Natural
language analyzer performs tokenizing and these
tokenize words are match with predefined data in
lexicon to define candidate actor, use case and
relationship. And then Use case modeler creates
actors, use cases, relationships and rules as input of
the use case diagram generator. Finally, the use case
diagram will be generated by Use Case Diagram
Generator. To elicit the requirements from
stakeholders, they can not only fill their requirements

in questionnaries and checklist form but also write
requirements or problem description in this system.

3.1 Questionnaries and Checklist Form

An ideal questionnaries and checklists form
includes the relevant information of the specific
domain, for the stakeholder’s who do not know what
are their needs or what they want to be providing
knowledge to suit the user's need. In this system, we
will construct questions and answer table to elicit the
requirements from the users automatically as
questionnaries and checklists form that includes
predefined questions and answer which is produced
by system analyst using elicitation techniques. The
data in the table can be changed upon the domain
specific. In this system, we will present a template
form to input the questions and answers of any
domain easily.

3.1.1 Change to Software Requirements
Specification (SRS) View

In this stage, the system will change the input
requirements checklist data to Software
Requirements Specification (SRS) view which is
produced bases on their input checklist requirements
and the rules of SRS.

3.1.2 Change to Use Case Diagram

At this stage, the system must be trained to extract
actor and use case from stakeholder’s requirements to
draw use case diagram using the rules of use case
modeling.

3.2 Capturing Requirements Description
from User

Another way of getting requirements of our

system is users can input their requirements
description or problem description as a text document
of the stake holder’s requirements.

3.3 Natural Language Analyzer

The Natural Language Analyzer has a parser,

which will be tokenizing the sentence; these tokens
will then be analyzed by using semantic analysis with
the aid of a business lexicon for identifying business
specific terms.

The resulting information gathered from this phase
will be candidate actors, candidate use cases and
candidate relationships respectively and these are to
be used by the next component called the Use Case
Modeler.

3.4 Use Case Modeler

In this phase of the system, the use case rules and
relationships will be created. These rules will then be
used by the Use Case Diagram Generator as its input.
The Natural Language Analyzer will populate the
candidate actors, candidate use cases and the
candidate relationships. The Use Case Modeler will
then map these candidates in their correct and proper
placing as well as creating the rules that will be
applied.

The Use Case Modeler is the one responsible for
the consistency of the use case diagram since the
rules are created by this component. The Use Case
Modeler will then store the correct and processed
candidate actor, candidate use cases and candidate
relationships as well as the rules generated into the
corresponding fields.

3.5 Use Case Diagram Generator

In this phase of the system, the use case diagram
will be created based on the rules, actors, use cases
and relationships that were processed by the Use
Case Modeler in the previous phase.

The Use Case Diagram Generator, with the use of
the rules that were previously generated, will then be
able to map out the correct placing and relationships
of the use cases and their corresponding actors.

4. System Implementation

This system is implemented by using C#
programming language and Microsoft SQL server
2005. In the system, software requirements
specification (SRS) can be easily generated from the
questionnaries and checklist form and produced use
case models which are based on the stakeholder’s
input requirements. The output results of
questionnaries and checklist as shown in Figure 3 and
4.

Figure 3. Software Requirements Specification

Figure 4. Use Case Diagram

Moreover, our system also produces use case

models which is based on users input requirements
description or problem description.

5. Conclusion

In this paper, we have presented an approach for
automate requirements elicitation using use case
models, which is based on the questionnaries and
checklists of requirements elicitation techniques and
concept of Natural Language Understanding.

The main idea of this approach is to accept users’
requirements as questionnaries and checklists form or
users’ requirements description. Then produce final
results as software requirements specification (SRS)
and use case models. The use case diagram is
important because it shows the requirements or
functionalities of the system for clear understanding
of their needs. From these views, other views like
class diagram and sequence diagrams can be
extended.

This system only emphasizes on the area of
requirements elicitation and analysis phase and the
system can be defined as only association, include
and extend relationship between use cases if the user
completely enters the requirements information. The
generalization relationships between actors and use
case can be extended in this system.

6. References

[1] Grady Booch, James Rumbaugh and Ivar

Jacobson: The Unified Modeling Language
User Guide

[2] J. Michael Moore, Frank M. Shipman: “A

general introduction to the design of
questionnaries for survey research”, University
of Leeds, online document.

 http://www.leeds.ac.uk/iss/documentation/top/t
op2.pdf

[3] Natural Language Processing

http://en.wikipedia.org/wiki/Natural_language_
processing

[4] Neil W. Kassel and Brian A. Malloy, An
Approach to Automate Requirements
Elicitation and Specification, Proceedings of
the 7 th IASTED International Conference
SOFTWARE ENGINEERING AND
APPLICATIONS November 3-5,2003, Marina
Del Rey, CA, USA.

[5] B. Nuseibeh & S. Easterbrook, Requirements

Engineering: A Roadmap, The future of
software engineering, ACM Press, 2000, 37-46.

[6] Oberg, R. (2003). Applying Requirements

Management with Use Cases, [online].
Available: http:// www3. software.ibm.com/
ibmdl/pub/software/relational/web/whitepapers/
2003/apprmuc.pdf(March 26, 2004).

[7] Raghavan, Zelesnik, & Ford, “Lecture Notes of

Requirements Elicitation, “1994:
www.sei.cmu.edu/publications/documents/ems/
94.em.010.html

[8] H. Reubenstein & R, Waters, The Requirements

Apprentice: Automated Assistance for
Requirements Acquisition, IEEE Transactions
on Software Engineering, 17(3), March 1991,
226-240.

[9] E. Turban

“Expert System and applied artificial”
International Edition
ISBN-0-20-946565-6

[10] J. Van Buren & D. Cook, Experiences in the
Adoption of Requirements Engineering
Technologies, CROSSTALK, The Jorunal of
Defense Software Engineering, 11 (12),
December 1988, 3-10.

[11] Wai- Ching Leund:”how to design a

questionnaries”. University of East Anglia
 http://homepages.inf.ed.ac.uk/mfelici/doc/questi

onnaries.pdf

[12] Zave, P., 1997, Classification of research

efforts in requirements engineering: ACM
Computer. Surv, v. 29, p. 315-321

[13] http://www.cc.gatech.edu/classes/cs6751_97_

winter/Topics/quest-design:”Questionnaries
Design “. Online document.

